Analytic functions on tubes of nonarchimedean analytic spaces
نویسندگان
چکیده
منابع مشابه
Composition operators acting on weighted Hilbert spaces of analytic functions
In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and observed that a formula for the essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators are investigated.
متن کاملMultipliers on Spaces of Analytic Functions
In the paper we find, for certain values of the parameters, the spaces of multipliers ( H(p, q, α), H(s, t, β) ) and ( H(p, q, α), ls ) , where H(p, q, α) denotes the space of analytic functions on the unit disc such that (1 − r)Mp(f, r) ∈ Lq( dr 1−r ). As corollaries we recover some new results about multipliers on Bergman spaces and Hardy spaces. §0. Introduction. Given two sequence spaces X ...
متن کاملcomposition operators acting on weighted hilbert spaces of analytic functions
in this paper, we considered composition operators on weighted hilbert spaces of analytic functions and observed that a formula for the essential norm, gives a hilbert-schmidt characterization and characterizes the membership in schatten-class for these operators. also, closed range composition operators are investigated.
متن کاملIntegration in Hermite spaces of analytic functions
We study integration in a class of Hilbert spaces of analytic functions defined on the Rs. The functions are characterized by the property that their Hermite coefficients decay exponentially fast. We use Gauss-Hermite integration rules and show that the errors of our algorithms decay exponentially fast. Furthermore, we study tractability in terms of s and log ε−1 and give necessary and sufficie...
متن کاملApproximation of analytic functions in Korobov spaces
We study multivariate L2-approximation for a weighted Korobov space of analytic periodic functions for which the Fourier coefficients decay exponentially fast. The weights are defined, in particular, in terms of two sequences a = {aj} and b = {bj} of positive real numbers bounded away from zero. We study the minimal worst-case error eL2−app,Λ(n, s) of all algorithms that use n information evalu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebra & Number Theory
سال: 2017
ISSN: 1944-7833,1937-0652
DOI: 10.2140/ant.2017.11.657